

Why do we need NBTs to be competitive?

Productivity Challenges for Growers

Growers require sustainable crop productivity and efficiency gains as they navigate multiple challenges.

K	CROP PRODUCTIVITY				
INCREASING SEED PERFORMANCE & PRODUCTIVITY					
OPTIMIZING PROFITABILITY IN ALL MARKET CONDITIONS					
ENHANCING OUTPUT & FUNCTIONALITY					
INSECT, WEED, DISEASE & NEMATODE CONTROL					
AGRONOMIC PERFORMANCE VERSUS OPERATIONAL CONSTRAINTS					

~ 3/4 of growers ranked

"productivity per acre"

as their #1 concern

CROP PRODUCTIVITY	R
BREEDING	
CRISPR	M M
BIOTECH	
CROP PROTECTION	
SEED APPLIED TECHNOLOGY	٢
DIGITAL SOLUTIONS	
AGRONOMICSOLUTIONS	

CRISPR-Cas Accelerates Breeding of Traits

æ)

PIONEER

Vast Potential for Wide Array of Applications

CRISPR-Cas Furthers Innovation for Pioneer® Brand Products

	DISEASE RESISTANCE	YIELD & YIELD Stability	DROUGHT TOLERANCE	OUTPUT TRAITS	MATURITY
CORN					
SOY				•	
CANOLA	•	•		•	
RICE	•		•		•
WHEAT		•			
SUNFLOWER	•			•	

Products, benefits and concepts described herein will not be offered for sale or distribution until completion of field testing and applicable regulatory reviews. * Source: Internal analysis and USDA. Developing solutions to the toughest agricultural challenges

Next Generation Waxy Corn

- Targeted deletion of the *Waxy* gene directly in elite maize germplasms via CRISPR-Cas
- Expected to overcome current breeding challenges, meet grower's demands for hybrid seed in most modern, high yielding germplasms, and improve supply reliability for processors

Improved Oil Quality

REDUCED TRANS FAT SOYBEAN OIL

 High oleic and low linoleic acid content, eliminating the need for hydrogenation and the creation of trans fats. http://www.calyxt.com/products/reduced-trans-fat-soybean-oil/

LOWER SATURATED FAT CANOLA OIL

 Oil with less than 3.5% saturated fat by deactivating one enzyme responsible for the synthesis of saturated fatty acids.

http://www.calyxt.com/products/lower-saturated-fat-canola-oil/

Targeted disruption of soybean FAD2 and FAD3 genes via TALENs

Fig. 3 Fatty acid profile from *fad2-1a fad2-1b fad3a* soybean plants. Oil from T2 seed from four different T1 *fad2-1a fad2-1b fad3a* mutant lines was analyzed. The genotypes for the *fad2-1a fad2-1b fad3a* plant lines at the *fad3a* TALEN target site were –7 bp/-7 bp (Gm183-4-3), –43 bp/-43 bp (Gm183-5-4), –43 bp/-43 bp (Gm183-5-5), and –43 bp/-43 bp (Gm183-5-9). The genotype for the *fad3a* plant line was –4 bp/-4 bp (Gm184-3-20). Error bars represent standard deviation of the oil levels within individual seeds, specifically, five seeds for Gm183-4-3, five seeds for Gm183-5-4, five seeds for Gm183-5-5, five seeds for Gm183-5-9, five seeds for Gm184-3-20, four seeds for WT, and 20 seeds for *fad2-1a fad2-1b*

Demorest et al. BMC Plant Biology (2016) 16:225

Crops with Improved Disease Resistance

Powdery Mildew resistance in bread wheat

- Targeted disruption of wheat *TaMLO* genes, via TALEN or CRISPR-Cas
- Mutations induced in all three genomes (a,b,d); the same outcome through traditional mutagenesis would be much more challenging
- Broad spectrum resistance to powdery mildew

Wang et. al. (2014) Nature Biotechnol. doi:10.1038/nbt.2969

Bacterial blight resistance in rice

- Targeted disruption of rice OsSWEET14 bacterial blight susceptibility gene, via TALEN
- Improved resistance compared to wild-type plants

Improved Storage and Processing Characteristics

(a)

weight)

fresh

6/6m)

Improved quality potatoes

- Inactivation of the polyphenol oxidase responsible for black spot, enzymatic darkening and discoloration in tubers, via TALENs
- Intended phenotype: reduced black spot, resulting in increased tuber quality and less food waste

https://www.aphis.usda.gov/biotechnology/downloads/reg loi/16-320-01 air inquiry.pdf

- Inactivation of the enzyme responsible for the degradation of sugars in the tuber, via TALEN
- Reduces the sweetening of cold-stored potatoes and creation of acrylamide during frying

Thank You!